
Using Automatic Differentiation in Sensitivity Analysis of Nuclear Simulation Models

Mihai Alexe1, Oleg Roderick, Mihai Anitescu, Jean Utke2, Thomas Fanning, and Paul Hovland

Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
mihai@vt.edu, roderick@mcs.anl.gov, anitescu@mcs.anl.gov, utke@mcs.anl.gov, fanning@anl.gov, hovland@mcs.anl.gov

INTRODUCTION

Sensitivity analysis is an important tool in the study
of nuclear systems. In our recent work, we introduced a
hybrid method that combines sampling techniques with
first-order sensitivity analysis to approximate the effects
of uncertainty in parameters of a nuclear reactor
simulation model. For elementary examples, the approach
offers a substantial advantage (in precision, computational
efficiency, or both) over classical methods of uncertainty
quantification [1].

First-order sensitivity analysis is predicated on
obtaining derivative information from nuclear engineering
models. For software suites such as SAS4A/SASSYS-1,
manual development of derivative information is
considered to be a difficult task [2]. Divided-difference
approaches are inefficient for high-dimensional
uncertainty sets. Automatic differentiation (AD)
approaches [3,4] offer a conceptually promising
alternative for obtaining derivatives.

Most of the available AD tools are developed for
research purposes; their potential benefit for realistic
applications has not been fully examined. We refer to [5]
for an example of applying AD to Fortran 90 code, but we
note that many models of interest are more complex and
developed according to older (Fortran 77) standards.

We investigate the following question: Are AD tools
now at a stage where they can provide derivative
information for realistic nuclear engineering codes at a
minor development cost?

DESCRIPTION OF THE WORK

AD is a technique used to evaluate derivatives of
functions defined by computer programs based on the fact
that any program can be viewed as a finite sequence of
elementary operations, the derivatives of which are
known.

A program P implementing the function)(f ,
can be parsed into a sequence of elementary steps:

)...))((...(: 11 fffP kk  (1)

The task of AD is to assemble a new program 'P to
compute the derivative.

 

,...2,1

,...:' 1

2

1

1




















i

f

f

f

f

f
P

ik

k

k

k
i 

(2)

The reverse (adjoint) mode of AD reverses the
control flow of the program to compute the derivative.

T

k

k

TT

f

f

f

ff

































11

21 ...
 (3)

The advantage of the adjoint mode over the direct
mode (2) is computational efficiency: it allows
computation of all components of the gradient in a single
run of 'P , as opposed to multiple runs required by (2).
There is a theoretical limit, independent of the uncertainty
dimension, on the additional computational cost of
running the AD-augmented code in reverse mode [4].

In an ideal situation, preparing the code for
processing by AD tools is limited to identifying inputs
and outputs of interest. In practice, application of AD
requires additional effort.

Applying AD to Codes with Major Legacy
Components

The following (Fortran 77) programming features
potentially make the application of AD difficult:

- Machine-dependent code sections need to be
removed.

- EQUIVALENCE constructs need to be replaced
by simple array allocations and element-wise
assignments.

- COMMON blocks with inconsistent sizes
between subroutines need to be renamed; in
addition, initialization with strong typing needs
to be enforced through use of additional
variables in each subroutine.

- Subroutines with variable number of parameters
need to be split into separate subroutines for each
type of call.

1 Virginia Tech
2 ANL; Computation Inst., Univ. of Chicago.

- Direct memory copy operations need to be
rewritten as explicit operations.

- IMPLICIT definitions occasionally need to be
replaced by subroutine definitions.

We note that the problematic features encountered so
far are not related to the mathematical structure of the
model. In the possible case of inherently non smooth
operations, a smoothing interpolation can be
differentiated instead, which also does not require
modifications of the mathematical structure. We estimate
that a competent programmer would need approximately
one week to prepare a code of comparable complexity for
automatic differentiation. Since the results of sensitivity
analysis have many applications, we find the development
cost acceptable. We hope to provide a detailed description
of performance and development in an extended version
of the paper.

Applied Example

We applied automatic differentiation tools (in
forward mode) to a nuclear reactor simulation code
known as MATWS. The model combines the point-
kinetics module from the SAS4A/SASSYS-1 code with a
simplified representation of the reactor heat removal
systems. The code consists of over 10,000 lines of Fortran
77. MATWS was previously used in combination with the
statistical simulation tool GoldSim to model accident
scenarios [2].

The chosen outputs of interest were the transient
coolant, cladding, structure, and fuel temperatures at the
end of a simulation for an unprotected loss of flow. The
chosen inputs were the radial core expansion, control rod
driveline expansion, fuel axial expansion, and Doppler
reactivity feedback coefficients. The code was passed
through different AD tools: ADIFOR, OpenAD/F, and
TAMC in direct mode and TAPENADE in reverse mode
[6]. The tools use somewhat different algorithms for
optimal evaluation of the sequence of numerical
operations required by (2) or (3). For verification, we also
computed the derivatives using finite-difference
approximation, FD.

Table 1. Comparison of different estimates for the
derivatives of the fuel and coolant temperatures with
respect to the radial core expansion coefficient.

AD Tool
Fuel Temperature
Derivative, K

Coolant Temperature
Derivative, K

ADIFOR 18312.5474227 17468.4511373
OpenAD/F 18312.5474227 17468.4511372
TAMC 18312.5474248 17468.4511392
TAPENADE 18312.5474227 17468.4511372
FD 18312.5269537 17468.4315994

RESULTS

Table 1 presents a portion of derivative verification
tests. All the results and FD approximation agree within
0.01% or better (and all AD results agree almost perfectly
with each other). We conclude that AD results are valid.

We view our work as a strong argument for applying
AD to nuclear engineering codes with legacy components.
This opens the way to improving a wide range of existing
tools of simulation and analysis in nuclear reactor
applications. An ideal subject of AD-based sensitivity
analysis is a code that is portable, language-standard
compliant, and reversible (effectively, does not contain
features that make adjoint differentiation inefficient). Not
all the models can be held to this standard. Future work
on using AD for sensitivity analysis will likely be a co-
design process, with improvements made to AD tools and
the newly developed models simultaneously.

ACKNOWLEDGMENTS

This work was supported by the U.S. Dept. of Enegry
under Contract No. DE-AC02-06CH11357.

REFERENCES

1. O. RODERICK, M. ANITESCU, and P. FISCHER,
“Polynomial regression approaches using derivative
information for uncertainty quantification,” Nuclear
Science and Engineering, 164 (2), pp 122-139 (2010).
2. E. MORRIS and W. NUTT, “Uncertainty analysis for
unprotected loss-of-heat-sink, loss-of-flow, and transient-
overower events in sodium-cooled fast reactors,” in Proc.
International Conference on Fast Reactors and Related
Fuel Cycle (2009).
3. J. UTKE, U. NAUMANN, M. FAGAN, N. TALLENT,
M. STROUT, P. HEIMBACH, C. HILL, and C.
WUNSCH, “OpenAD/F: A modular open-source tools for
automatic differentiation of Fortran codes,” ACM Trans.
Math. Softw., 34, pp. 1-36 (2008).
4. A. GRIEWANK, Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation, Frontiers
in Applied Mathematics, 19 (2000).
5. B. REARDEN and J. HORWEDEL, “Automatic
differentiation with code coupling and applications to
scale modules,” in Proc. Joint International Topical
Meeting on Mathematics and Computation and
Supercomputing in Nuclear Applications (2007).
6. M. ALEXE, O. RODERICK, J. UTKE, M.
ANITESCU, P. HOVLAND and T. FANNING,
“Automatic differentiation of codes in nuclear
engineering applications,” Tech. Rep. ANL/MCS-310
Argonne (2009).

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

